
MA 3232 - Numerical Analysis
Exam I - Quarter II - AY 04-05

Instructions: Work all problems. Read the problems carefully. Show appropriate work, as
partial credit will be given. One page (8 1

2 by 11) of notes (both sides) and “Blue Books”
permitted.

1. (30 points) a. Use two iterations of Newton’s method to estimate the solution of

f(x) = x3 − 6x + 3 = 0

between x = 0 and x = 1 .

solution:

Newton’s method uses the algorithm

xn+1 = xn − f(xn)
f ′(xn)

which in this case reduces to

xn+1 = xn − x3
n − 6xn + 3
3x2

n − 6

Note that, also in this case, f(0) = 3 and f(1) = −2. Since x0 is not specified,
we must choose it.

Normally, the rule of thumb is to pick a value for x0 that will produce the
smallest possible initial residual. Therefore, since f(1) is closer to zero, then, of
the two given values, we should take x0 = 1. In this example, however, because
the residuals for both initial values are almost the same magnitude, then a
very good argument can be made to pick as the starting value the midpoint,
i.e. x0 = 0.5. Probably the poorest choice, in general, would be x0 = 0.

Proceeding from x0 = 1, we have

x1 = x0 −
x3

0 − 6x0 + 3
3x2

0 − 6
= 1 − (1)3 − 6(1) + 3

3(1)2 − 6

= 1 − (−2)
(−3)

=
1
3

= 0.3333

1 - 1

solution:

Repeating the calculations produce the results shown in the table below:

n xn f(xn) f ′(xn) xn+1

0 0.0000 −2.000 −3.000 0.3333
1 0.3333 1.037 −5.667 0.5163

Therefore x2 = 0.5163. The table below summarizes the results you should
have obtained with any of the possible starting values (including up thorough x3,
which will be needed for the next part):

x0 x1 x2 x3

0.0000 0.5000 0.5238 0.5240
0.5000 0.5238 0.5240 0.5240
1.0000 0.3333 0.5163 0.5240

b. Estimate the error in your answer to part a.

solution:

The standard method for error estimation in an iterative algorithm is to
use the next term, which means conducting one more iteration, i.e.

n xn f(xn) f ′(xn) xn+1

2 0.5163 0.03982 −5.200 0.5240

or x3 = 0.5240. Therefore the error in x2 = 0.52163 is approximately
x3 − x2 = 0.5240− 0.5163 = 0.0077

(Note that, had you started with x0 = 0, the approximate error would be 0.0002,
and, if you had picked x0 = 0.5, then the estimated error would be less than
machine precision (i.e. < 0.0001). Interesting enough, that means that, in this
case, starting with a slightly “worse” initial guess actually produces a correct
result faster. Just goes to prove you don’t necessarily win them all.)

1 - 2

c. Approximately how many iterations of the bisection method would have been
required to achieve the same error?

solution:

In the bisection method, we know

en ≤ L0

2n

where L0 denotes the length of the original interval (which, in this case, assum-
ing x0 = 0 and x−1 = 1 is just one). Therefore, in this case

en ≤ 1
2n

≤ .0077 =⇒ n
.= 8

(Note that, had you started with x0 = 0, and therefore obtained x2 = 0.5238
with an approximate error of 0.0002, bisection would require about thirteen
iterations to achieve the same accuracy. And, had you started with x0 = 0.5,
bisection would have required about fifteen.

d. Would the method of linear iteration, written as

xn+1 =
x3

n + 3
6

have been a reasonable alternate method for solving this problem? (Briefly justify your
answer.)

solution:

Probably not, although you need to be precise about what your criteria
are!

Linear (fixed point) iteration will converge for this example, since

g(x) =
x3 + 3

6
=⇒ g′(x) =

x2

2

and therefore, for 0 < x < 1, |g′(x)| < 1, which is sufficient to guarantee
convergence. Therefore, the most reasonable criterion here is minimal function
evaluation cost.

1 - 3

solution:

According to our result from part b., Newton’s method appears to have
converged to two digits after only two iterations. Since the number or accurate
digits in a quadratically convergent method approximately doubles each iter-
ations, our result would therefore almost certainly be accurate to four digits
with one more iteration, and to eight or more digits with at most two more,
i.e. a total of four iterations or eight function evaluations. (And really, in this
case, if done properly, f ′(x) can be computed almost for free!) Linear iteration,
which is only linearly convergent, would almost certainly converge more slowly
here, especially as we increase the number of accurate digits required, although
it might be comptetitive if we only require about four digits, since

g′(.5) = .125
So Newton is probably preferable here, especially since computing f ′(xn) is
very inexpensive!

1 - 4

2. (20 points) Consider the table of data:

x e−x

−0.15 1.16183
−0.10 1.10517
−0.05 1.05127

0.00 1.00000
0.05 0.95123
0.10 0.90484
0.15 0.86071

and the difference approximation

f ′(xn) =
fn+1 − fn−1

2h
+ O

(
h2

)

(1) Approximate f ′(0) using step sizes of h = 0.15, 0.10, and 0.05.

solution:

For step size h = 0.15, the approximation is

f ′(0) .=
f(.15) − f(−.15)

2(.15)
=

(0.86071)− (1.16183)
.30

=
−0.301120

.30
= −1.00373

Similarly, for h = .10:

f ′(0) .=
f(.10) − f(−.10)

2(.10)
=

(0.90484)− (1.10517)
.20

=
−0.200330

.20
= −1.00165

and for h = .05:

f ′(0) .=
f(.05) − f(−.05)

2(.05)
=

(0.95123)− (1.05127)
.10

=
−0.100040

.10
= −1.00040

2 - 1

(2) Is the behavior of the error in your approximations consistent with O
(
h2

)
error?

(Briefly explain your answer)

solution:

In this case we know the actual function, i.e. f(x) = e−x and therefore we
know the correct answer:

f ′(x) = −e−x =⇒ f ′(0) = −1.0000

and can create the following table:

h Error Error/h2

0.15 0.00373 0.166
0.10 0.00165 0.165
0.05 0.00040 0.160

Observe that, in each case, the error is almost exactly the same multiple of h2,
i.e.

Error
.= 0.160h2

This is exactly the behavior we expect from an O
(
h2

)
error.

Equivalently, we can look at the ratios of the errors compared to the squares
of ratios of the step sizes (since the method is supposedly O

(
h2

)
, and produce

the following table:

h1 Error1 h2 Error2 Error1/Error2 (h1/h2)
2

0.15 0.00373 0.10 0.00165 2.261 2.25
0.10 0.00165 0.05 0.00040 4.125 4.00

This table confirms that reducing the step size by a given factor does in fact
reduce the error by approximately the square of that factor, which is precisely
the behavior we should expect from an O

(
h2

)
method!

Alternatively, note that reducing the step size from h = 0.15 to h = 0.05,
i.e. by a factor of three reduces the error by a factor of:

0.00373
0.00040

.= 9.33

a result totally consistent with O
(
h2

)
.

2 - 2

3. (30 points) Consider the following table of data:

xi fi ∆fi ∆2fi

0.0000 0.0000 0.5879 −0.1121

0.2000 0.5879 0.4758 −0.1468

0.4000 1.0637 0.3290 −0.1644

0.6000 1.3927 0.1646 −0.1644

0.8000 1.5573 0.0002 −0.1486

1.0000 1.5575 −0.1484

1.2000 1.4091

a. Using the most appropriate second-degree Newton-Gregory forward interpolating
polynomial, approximate f(0.63) .

solution:

To uniquely determine a quadratic will require three data points. The
closest three to x = 0.63 are:

x = .4000 , .6000 and .8000 =⇒ x0 = .4000

The complete difference table, through the third forward differences (which will
be needed for error estimates) is:

xi fi ∆fi ∆2fi ∆3fi

0.0000 0.0000 0.5879 −0.1121 −0.0347
0.2000 0.5879 0.4758 −0.1468 −0.0176

x0 → 0.4000 1.0637 0.3290 −0.1644 0.0000
0.6000 1.3927 0.1646 −0.1644 0.0158
0.8000 1.5573 0.0002 −0.1486
1.0000 1.5575 −0.1484
1.2000 1.4091

3 - 1

solution:

The second-degree Newton-Gregory polynomial, based on x0 is defined as:

P2(x) = f0 + s ∆f0 +
s(s − 1)

2
∆2f0 where s =

x − x0

h

In this case,

s =
0.63 − .40

.20
= 1.15

and so

P2(0.63) = (1.0637) + (1.15)(0.3290) +
(1.15)(1.15− 1)

2
(−0.1644) = 1.4279

b. Estimate the error in your answer to part a.

solution:

The normal error estimate for the Newton-Gregory polynomial is the “next
term,” i.e. in this case

E2(x) .=
s(s − 1)(s − 2)

3!
∆3f0 =

(1.15)(1.15− 1)(1.15− 2)
6

(0.0000)

= 0.0000 ????

3 - 2

c. Do you feel the error estimate you obtained in part b. is reasonable? (Briefly
explain your answer!)

solution:

The “next term” error estimation rule is based on the exact error formula

E2(x) =
x − x0)(x − x1)(x − x2)

3!
f (3)(ξ)

where ξ is some (unknown) point in the interval containing x0, x2 and x. In
most cases, i.e. when the values in the appropriate column of the difference
table do not differ by an order or more of magnitude, then we can estimate

f (3)(ξ) .=
∆3f0

h3

In this case, however, the value of zero for ∆3f0 does not appear representative
of the values in that column, and therefore an error estimate of zero is not rea-
sonable. A better (although probably conservative) estimate would probably
be, because we are unsure of even the sign

E2(x) .= ± (1.15)(1.15− 1)(1.15 − 2)
6

(0.02) = ±0.0011

(Note the exact function here is

f(x) = 2e−(x/4) sin(πx/2) =⇒ f(0.63) = 1.4280

and therefore the actual error is E2 = .0001, and so our conservative estimate
is actually about an order of magnitude high. (Which is far better than an
order of magnitude low!)

3 - 3

4. (20 points) Assume you are working with a three-digit, decimal based, chopping
machine. In this machine, the algorithm for computing exponentials produces

exp(−5/17) = .750

a. What is the forward error of this computation?

solution:

By definition, the forward error is the difference between the result produce
by the given algorithm in the given machine (f̃(x)) and the exact result. In
this case,

f(x) = e−5/17 = 0.7451888170... and f̃(x) = exp(−5/17) = .750

Therefore, the forward error is

f(x) − f̃(x) = 0.7451888170...− .750 = −0.00481...

b. What is the backward error of this computation?

solution:

By definition, the backward error is the difference between the value of x
passed to the algorithm and the value of x̃ that would have had to be passed in
order for the computed result to be exactly correct. In this case, that means x̃
satisfies

f(x̃) = ex̃ = 0.750 =⇒ x̃ = ln(.750) = −0.2876820...

Since the exact value of x = −(5/17) is

x = −0.2941176...

then the backward error is

x − x̃
.= −0.2941176− (−0.2876820) = −0.0064356

4 - 1

c. Based on your answers to parts a. and b. above, does this machine’s algorithm
for computing ex appear reasonably satisfactory for −1 < x < 0?

solution:

Based on parts a. and b., above the relative forward and backward errors
are, respectively

f(x) − f̃(x)
f(x)

.==
(−0.00481)

0.745
.= −0.006

and
x − x̃

x

.=
(−0.00644)
(−0.294)

.= 0.022

In a three-digit, decimal, chopping machine, machine precision is

εmachine = β1−n = 10−2 = 0.01

Therefore, the forward error is less than machine precision, and the backward
error is only slightly larger than machine precision. This is quite satisfactory
performance for any algorithm, because, in fact, the best you can expect out of
any algorithm is backward stability, i.e. that for any x,

∣∣∣∣
x − x̃

x

∣∣∣∣ ≤ Kεmachine

where K is a “small”, i.e. close to unity, constant. That certainly appears to be
the case here, since the relative backward error computed above is only about
twice machine precision.

4 - 2

